A proof of Euler’s formula using the Leibniz product rule.
The most remarkable formula in mathematics.-Feynman
The complex exponential may be defined as follows:
\[\begin{equation} \text{exp}: \mathbb{C} \rightarrow \mathbb{C} \\ z \mapsto \sum_{n \geq 0} \frac{z^n}{n!} \tag{1} \end{equation}\]
Using the Cauchy Product and Mertens’ theorem, this implies that:
\[\begin{equation} \forall a, b \in \mathbb{C}, \text{exp}(a) \cdot \text{exp}(b) = \text{exp}(a + b) \tag{2} \end{equation}\]
Now, let’s consider the function:
\[\begin{equation} \forall t \in \mathbb{R}, f(t) = e^{-it} \cdot (\cos t +i\sin t ) \tag{3} \end{equation}\]
By the Leibniz product rule:
\[\begin{equation} \forall t \in \mathbb{R}, f'(t) = -i \cdot e^{-it} \cdot (\cos t +i\sin t ) + e^{-it} \cdot (i \cos t -\sin t ) = 0 \tag{4} \end{equation}\]
Thus, \(f\) is constant everywhere.
Now, given that:
\[\begin{equation} f(0)=1 \implies \forall t \in \mathbb{R}, f(t)=1 \tag{5} \end{equation}\]
we may conclude that:
\[\begin{equation} \forall t \in \mathbb{R}, e^{it} = \cos t + i \sin t \tag{6} \end{equation}\]
QED.
For attribution, please cite this work as
Rocke (2022, Oct. 21). Kepler Lounge: A sublime proof of Euler's formula. Retrieved from keplerlounge.com
BibTeX citation
@misc{rocke2022a, author = {Rocke, Aidan}, title = {Kepler Lounge: A sublime proof of Euler's formula}, url = {keplerlounge.com}, year = {2022} }