Cauchy’s Little Theorem for Stieltjes Constants.
\[\begin{equation} \gamma_n = \frac{(-1)^n n!}{2 \pi} \int_{0}^{2 \pi} e^{-nix} \zeta(e^{ix}+1) dx \end{equation}\]
Given the Laurent series for the Riemann Zeta function:
\[\begin{equation} \forall z \in \mathbb{C} \setminus \{1\}, \zeta(z) = \frac{1}{z-1} + \sum_{n=1}^\infty \gamma_n \frac{(1-z)^n}{n!} = \frac{1}{z-1} + \sum_{n=1}^\infty \frac{(-1)^n}{n!}(z-1)^n \tag{1} \end{equation}\]
a formal comparison with the Taylor series developed around \(a=1\) yields:
\[\begin{equation} f(x) = \sum_{n=0}^\infty \frac{f^{(n)} (a)}{n!}(x-a)^n \tag{2} \end{equation}\]
which allows us to derive the identity:
\[\begin{equation} (-1)^n \gamma_n = \frac{d^n}{ds^n} \big(\zeta(s)-\frac{1}{s-1}\big) \tag{3} \end{equation}\]
Moreover, if we consider the Cauchy Differentiation Formula:
\[\begin{equation} f^{(n)}(a) = \frac{n!}{2\pi i} \oint_{C} \frac{f(z)}{(z-a)^{n+1}} dz \tag{4} \end{equation}\]
we may deduce that:
\[\begin{equation} (-1)^n \gamma_n = \frac{n!}{2 \pi i} \oint \frac{1}{(s-1)^{n+1}} \big(\zeta(s) - \frac{1}{s-1}\big) ds = \frac{n!}{2 \pi i} \oint \frac{\zeta(s)}{(s-1)^{n+1}} ds \tag{5} \end{equation}\]
Finally, using the change of variables \(s \mapsto 1 + e^{ix}\):
\[\begin{equation} \gamma_n = \frac{(-1)^n n!}{2 \pi} \int_{0}^{2 \pi} e^{-nix} \zeta(e^{ix}+1) dx \end{equation}\]
QED.
Hardy, G. H. and Wright, E. M. “The Behavior of zeta(s) when s->1.” §17.3 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 246-247, 1979.
Havil, J. Gamma: Exploring Euler’s Constant. Princeton, NJ: Princeton University Press, 2003.
Finch, S. R. “Stieltjes Constants.” §2.21 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 166-171, 2003.
For attribution, please cite this work as
Rocke (2023, June 1). Kepler Lounge: Cauchy's Little Theorem. Retrieved from keplerlounge.com
BibTeX citation
@misc{rocke2023cauchy's, author = {Rocke, Aidan}, title = {Kepler Lounge: Cauchy's Little Theorem}, url = {keplerlounge.com}, year = {2023} }